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Preliminary Swrvey in fruncatlon Errors
in the Numerical Solution of
Partial Differential Equations

The past decade was narked by & burst of Ilanterest and activity which
has animagted the Tield of numericael methods in general and “the numerical
solution of differential equations in particular. The interest in numeriecal
anelysis continuves to swell, primarlly because of the success of the large
scale calculamlng machines. Progress in mechanical computation has opeoned
up whole areas herectofore deemed inaccessible. The time required for comp-
tation in a given instance is reduced; which, in turn, has thrown us into
lengthy analytical studies and placed addlulona_ emphasis on mumerical methods.

We concede the necessity to be well grounded in both the principles and
the existent technigues of numerical analysis in order to adapt best availeble
methods to the machine at ocur disposal, to cauprehend the inherent limitations
of our methods, and to devise error controls and modified techniques which are
best applicable to that machine. We want to estimate effectively the religbility
of eny nugerical result we obtain, improve that reliability, whenever it is
poasible, and control that reliability in thet lmproved state.

Whereas the svaillability of large scale rapid caleulstions has made feaseble
the numerical solution of many problems of previously pronibitive complexity,
the effective use of such devices depends strongly upon continued advancement
of research in relevant fields of mathematical analysis,

One of the most powerful methods for solving a partial differential equation
numerically is the method of finite differences, in which one flrst spproximates
the differential eguation by & difference equation and then solves this resulting
difference equation. We may suspect that since we fail to spproach a limit in
obtaining numerical results by these replacements, that these new machlues in
uging simplest possible methods for the solution of our pertial differential
equations will attein desired accuracy by means of many very short steps or by
an ultrafine mesh. But for bigger and bigger problems, the danger of accumulated
error due to many. steps and the limitations on fineness of mesh imposed by
limited high speed memory capacity will oppose obtaining accuracy by ettravagan+lv”
short stepe and ultrafine mesh.

For all these reasons our new machines intensify our search for methods
simple enough to ve coded for praetical usge bub powerful enocugh to produce
adequate accuracy wibhous inreagsonable reduction in step length or mesh size.
And also, it is ofiten coanvenient to retain present methods boosted and lmproved
with effective error analysis.
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Often in situations representing real problems, a knowledge of the
physics of the system will give a clear indication of any marked inaccuracy
in the solution., In the sbsence of such guidance; however, the best that

_can be done is a check on the solution by means of a more accurate approxi-

mation o the equation using differences of higher order than those used to
obtain the solution,originally. It cannot be too strongly remarked, however,
that such higher difference formulae should not be used in the original
calculation since they are equivalent to replacing the original differential
equation by one of higher order, and may thus introduce spurious detall into
the solution. A less dangerous procedure is to use higher difference formulae
to estimate the error of a result cbtained by the use of the simpler methods.

A better method is to decrease the size of the interval keeping in mind
the possibilities of the storage capacity of ow machine. Even this does not
necessarily yield results of incressing accuracy. We are soon to see that
asgociated with a numeyical method is an inherent error by which we are bound

83 long a8 we employ that method. It is ilmportent that we engaged in applica-

tions of finite differences, keep these limitations in mind, lest we Tind

- ourselves ineurring heavy labor, in vain, alming at en accuracy that 1s not,

in the first place, &n inherent concomitant of the process being employed.

While Courant, Friedricks and Lewy studied the parabolic eguation repre-
penting the one-dimensional flow of heat in a conducting wire, or the diffusion
of a liguid or gas along a porous tube, from the finite difference point of

-view, they were lead to thelr fundamagtal theoyen on the relationship between
the gpace and time intervals. Ciz ‘ éiéﬁ

”—M‘a‘”:

The important comtribution of Courant’ and his Go-workers was to show that it
is not possible to choose the step in x and the step in t arbitrerily if a
table solution is to be cbtained. By considering the difference between the
sglution of the differential equation and that of the difference equation,they
showed that the error was bounded only if ¥ = (7 24 f%'éé 2

NS

and that it grows exponentially with % when?f>>kg . This implies that when
solving en equation of that general type steps 1n t and steps in X must be
chosen S0 &8 to make (2> ¢% ,_.._.L-

. @EX): & | .
end that, in consequerce, unlimited dgcrease in the steps ﬁ1)(wnlj.not lead
to ijmproved accuracy unless accompanied by a suitable decrease in steps in t.
So that when the size of the interval 1s decreased in any directlon, care must
be taken to decrease other intervals appropriately. Unfortunately, more general
versions of Courant's vesults are not always evailable but the known forms may
give some idea of the dimensions involved.

If your intuition has been appealed to in this discourse, it has not been

" totally relied upon., Assertions (if the statements contained herein can be so

dignified) were not backed up with practical examples, but problems of error
analysis have been treated as adequately as time and preparation permitied.
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‘S0, you are looking for & panacea? Beware - it will never suffice every

11l of emy numericel method.  You already know the andWers? Even though it is

sugpected tAat you mean mere spproximations to the answers, with your keen
phy81cal\1nsight into your very own problem and past experience with the special
behavior+#f your previocus resulis, what you already know is probably very good;
and there is & high probability that that can be improved and conorolled in
that imprcved state.,
4""’#/ iy ,’:
A "Marchlng" problem vas defined by Richardson ag one in which the imtegral

. can be stepped out from a.part of the boundery. The prediction of asironomical

events belongs to the marching class. Also, vweather prediction belongs to the
semé, at least if you believe that future weather is determined by present
weather together with astrcnomlcal events which are foreknown.

" cohstder 3PV, 3(¥,%¥ +£)=0 _
o TE Y TR

our barotropic non»diver eg@ equation; for which we will be given initially a
Pield of #'s used to exzrapolameslnto the future using short time steps. -Cur
eqpaticn in expanded form reads |,

: _aa gg--v (v?wf) + (v2¢+f)

No investigation was made herein as to the relative magnitudea of the steps
considered in x, y, and t.. We shall assume that some kind of rapport has been
reached and for a given step in t, corresponding steps in % and y are likewise
determined. It appears that if we knew any solution that if we also got a series
of numerical solutions we could note any growth of instability and set our bounds.

. Tt
It is very important that the differences should be"centered". As one
would suspect, oliwrepproximations are less accurate near the ends of our interval

_then near the middle. Central difference formulse have usually proved superior

converglng more rapidly than other formulae ahd haviang smaller remainder terms.

From our fleld of *'s we estim&ﬁe our W and W according to the rule:

-"‘I}M;y;t> - ¥ ("")yﬂt)

j!)’yf\[)‘(x,y'i‘k-,t) - ¥ (X,:}I’,t)
A ‘ 2 .

Theae give Lorward flrstndlfference quotlents. The backward first difference
guotients are ‘ :

V= #(x,y,t) - ¥{x-h,y,t)
X o R

wit
o B,
AP e . i
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ﬂr{j'r = \lf(x,y,t) -V (KyY“kﬁt)ﬁ .
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k
whereas thé first central difference

wa=${x4 g LYYy (x- %,y,t), and analogously
R — -

-y

for ¥ . Heowever, we have no continuous data, but it is assigned at discrete

point¥ which leaves us no altermative but o work with what we have, lest we
start espproximating answere obtained from spproximated data which might be
worgt than backward and forward differences. TFor points at a left end we might
uge & forward difference; for points at a right end we might use a backward
difference, : :
‘\

What e%&r have vwe made in this estimating our first partials? Scarborough
states that the inherent (truncation) error in the difference-equation solution
of a differential equation can be found by expressing the difference quotients in
terms of derivatives and this can be done by means of Tayler's formulae,

~In the above formulae "t" does not vary so we consider ¥ a function of x,y:’
n? b n |
el — -\ \ ; e\ ji
H(xth,y)= IP(X;BI)"'h\{IX'*‘ 5T Qfx}c""B; \’m. LT Wttt e e e

()= eoy)- i Ay Dy
Wx-h,y)= WX,y)- Wiy, 55 Vex BT Yo THT Yyt T o0 0 ¢
Forming the forward first difference quotient we see that

h h®

b ?(X+h,y)~ ¥ (%,y) _ Vs Y, 57 U,y + Bigher order terms.
DA L h :
SRR " ST ,‘5, TR ] | 2
We overestimated WX by % Wxx + %T wxxx +higher order terms, assuming ¥ possesses
defivatives of all orders. Similarly
| Y(xy Y= x-h,y)= | 2oy +Ei ! - higher ocrder t
U { gy qh ’?y = V=5, V. z7 ¥ + o . higher order terms.
We underes imatea ¥ b h J ° This leads
. r ‘1‘21;-.‘,-1 AR % y ) VXX - '3—:" 1
us to feel that even
RS 4 },"5’;' ) ] ) - hz - -
k- ¥ (X+h,y) = ¥ (x-h,y) =¥ +z+ V__ + . ... higher order terms in
5h . X 30 XXX )
h‘?: h6 o oo .
%T’ =T would have yielded better results; being a "centered" formula and taken

at points we are given.
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We cbtain next VEW = ggzy + %;g

o

Amd.since we have no material for its estimate at the boundary of our reglion we
will assign VEW a neutral value of zero there.

Tt is customary to use only the first approximation to the Laplacian obtained
by neglecting the fourth and all higher differences, where also we let h =k. We
define »

' . s -11{_ .
Voo o e nyy) - 2vCoy)e o (o)
h h2

We define : )

g Tyl ¥(x,y+ n)- 2U(x,y)+ W(x,y-h)
. VR A n2
Then Py = LL YUY Y 4y =

T 37 x W

1

=00 (e hyy)+ x-hey)e ¥,y B)s b(x,y-h)-bi(x,v) ).
n | .

“Agein we inguire about the error we are making,Scarborough defines ¢ - with

the help of Taylor's expansions as

3¢ +2n° Sy + terms in h*, 18, ete.

o= Wl ox®
Likewlse o 5 I
' ' v 2k O W ' ,
}?y = g:y—’z- + EE——_ e—y—%' + terms in hé, h,G, etc.

Adding

P I ) b ) .
Vool =37 + 3%y +2n% Oy , eh® Jy : .k g
# 3 5E 57 I axq + T ayh + terms in h ', h®, etec.

The error thus committed in writing

35%__ R Wl v
== §E By

is thus a power series in even powers of h, the principal part of the error being

" the first term of the series and equal to

2n2 (3% +auw\o .
Iy axl;‘ aylp

e



There are other formulee for the Laplacisn with theiw correapoziding error
 estimates, a few others of which it may do well to mentlon here.

This formule ig due to I{U_nz presented in his 1957 edition of Nunerical
Analysias. Suppose the Laplaczan ig desired at positlon (x 2¥g Y. Ue define U

and v Py the equatlons

U = g-%

0 5 ¥V m ¥ '
? IIg ,
k :
By S‘tirling s interpolation formule he def‘mes

m = k possibly. ‘

1
Wx,y,)= Wx sy )+ v 8%,y )5y 2 0% Bulx 7 )5y u(u®-1)us] ¥

(Xosyo)

1 TR I 5

+ 7 uz(uz-l)ax w(xo,yo) 57 u(u‘?--l)(uz—lﬂg,.a%; I!J(Xo,yo)+
1 u‘z(uz—l)(ng-ll-)aa 3 (K )"r | : ‘ ©
'ger‘ - > ps v o‘?yo e e v + : :
(QK;}_)f u?- )(11 - ) ces [WF-{k-1) L*5“ XY, )+
...._3:__ uZ(uz_l)(uzgh) 2 (K_l.):z] 5215 1"(1’ . )+ Ve e . 7

- 2KE 4 , e st €~ TVEg2¥g o2

where |
K= l T4 91’ l _ 2k-1 h

@ mean difference. By definliion of u ancl. T

5 v(x,yo) _ 3'”2' Fu(x,y )
.- h Sué 5

L=

tu = 0

ox> K=K
0

N 2 oy 1k >
_Eg___ {5 'ir(j‘o’yo)" - Iz SX. V(X0530)+ 35 X

where the subscript x on the d mézcates tha:b the dl:’:"ferences are 107’1’&06. with
respect to x. In particular ~ _

2 X r = o~ ‘ b " T

oL \V(wkoyyo)“) ¥ (ho'ﬁhpyo) -2 (‘COQYO)'! W(ELO'*‘ hpyc)y *

2‘& ) r\-‘ ) ' 00 :
E’x 1"(1“'-0{%): I’J(Komﬂ,,yo) ""N"(xo”hsffo)’f 6‘»‘(}{0,3’0)-1!-\!{(}{0 ”‘nsyo)"‘ \!/(XO+ gh»yo)*’

The 5§ and 5; can be handled similarly yielding

o
N
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BE‘V(X P )“1!)'(}:0,3“ 'h) 2¥(x oo )'HV(X 5:‘7 +),

°yﬁ?¢(xo’3’o>“”(x Vg -211)-!@,:(& 57, R)+6U(x 57 ) ~bi(x ,y #0)+U(x T 42h) .

S '.[.’hen . . N , ,
¥ sy . o
= (Eﬁzv C 1 182 wx v )- 15, Wk v )L 82 Wx vy ) e .o ]
;; e RGN R s
+ 1 [82 W(x | ') - 1 Bu Wx ,y), 1 88 Wx_,y ) + ]
. = ¥ 0*Yo’ w7 o’o’+ 3 ¥ afdo’ T 7

Y

For seke of completeness he deems it desirable to obtain the second-order
approximetion tc the Laplacian by teking into account the fourth 4i ff‘erencesn
Then with neglect of only gixth, elghth end higher differences

’ Py | v v 2 V(% ¥ )
sEtsEc B oo
“where

2 ) - 1 o 1 i 2 4 1 I i
£H v i - = % .Y - e = + Ir{ k'3 - —— 3 r
[ y(xO’;’EJ.E-:‘h“zﬁ’]’rg»,{mig}!f( o? o) 5 By \ir(xo,,)ro) 53{ l’r(v“o’ o) 12 Sy\]/(&o’}on °

'*'If we abbreviate v(x mh,y )=x'f and q;(x y+ml'1)=w,!r , then

h V(X »Y, )= m:z [ (’20”02*‘" 20*7s 2)"' 160, o1 0%, 2)-60 ¥ j .

For & guick and comprehensive visual aid we present what is called in the
g literature a stencil or lozenge below

P

The :lea.ding term truncated here ig

.
,‘,3\_:’ l ( ?a \p—( )+86 (}C )
I ) r QOh < o’ ¥, V O"’ :’;"

o w,{/ [,
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Realizing that in most difference tables the differences of ordinarily
 behaved functions eventually level off and finally become null, in general
we suspect a better aaproxrmatLon with these included terms.

Since it 1s often good to compute by one method and check by ancther oune
other formtla still will be presented. Booth and Milne, Booth using Milne as

"1 a reference, are chief advomates of the identity to follow below.

@

&
We define an operator H for approkimating the Laplacian !

Hy {(x H,y )R ~h, ) HU(x oy ) (v -h) -bilx Y, )]

and by stencil

1 -3 1y =H.

1

And we define 2 X likewise for approximating the Laﬁlacian,
2K Y=h(x Ly )b,y $ R0 (x -h,y 0P (x g,y -h) -Hilx gy )

and again by stencil or lozenge

-i : =2y,

1 : 1

Introduce operations Ex and Ey defined as follows:

B U(x,y) < (xth,y)

E w(x,y% ¥{x,%h), with symbolic asscciations

o
E = F1
« exp h 5{;
. 0
E =exp h
; y P 5.
From the expression for H we have

.
B (NB(BFE "My ap B (v).
‘ < g y :y'



Employing an exponentilal expansion

. H(‘,U)-L@vg(u -‘»'--111*\7h ¥ 4—5—]67-6— 115\'7§\l; + v e 2

T . A ™ PR
'»w if we let VP U= 6 oy §-% g
‘,' Pd,/a}i . a.‘f .
R . l N )
Again we see thet if we let VA h- H(v), our eyrror is in overestimating V& ! /
2 .
by ?2 V# ¥ by a first temmn approximaxion. Anéd from 2¥, we have:

-1 -l -1
-
2x(¥)= E’*"_.lE-s-Ex.,Ey o By TEE (V)

which by em@loylng again our exponentisl expansion leads to

2x(¥) *2h2‘7211f+ J-?g-—hh V41J+ R a?*\,; + 2% sy 2® B [(velsf)] 4

L ] ’
e, g ( axgayg 160 iz BKEBI{E
whence to o |
i " 2y ¥
By [22(0) 002
& 2R 0
! ; . -
So, if we' approximate V7Y by 2X our error is in overestimating V= by 5
l ’ : .
(V g &6 : ) by the Tirst term approximation. So we notice that as is to

K

v'be expected from the effectively larger 1nterval of differgnclng lnfolvea in
caleulating X, the error term, although O(h®)= order of h¥, hes a larver
coefficient then in the equation for H(V). v

In the special case of the Laplace eguation where VU =0

- 3% = - 51}‘*":‘ L v}"t‘(“if).
3:2oy? St | g;ﬁ 2 o

Our eguation for 2X{#}) becomes
2?;.(\;) =2h \/g(i,r)* h V (\I)*r —-go Va(d)
Combining this equation for EX(v) with the eguation for H we have

(km +2x)(y)= 6h2'<22(¢)+_%§_ Vell)+ .

s - - ’

Qr

(l(«HWQY) ¥ By x . ...
o ©
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By stencil or lozenge representation (MH+2X) is

i 0k 1
Iy 20 k4 =K according to Milne. Thais is still another
1 L1

approximating formule for the Laplacian.
OO R g
\lf s 6h2 bl :275'0"' o ] ° ° °

431—%§§l— where - %35~ vg (¥) is the first term truncated. He also

defines W= 2X - 2H =

-2 "ok ”'2 = pyvere -%-O (n®),

1 - 1

Milne replaces X and H by u81no K and Nd and concludes that below iz & true
igentity.

. , b
N O LK mR it R U S )
T a2 75t 3D 180 136,560 © 3780 Co

when truncated to N terms, when applied to any polynomial in x and y of degree
legs then 2H42. , -

We had found our first vartials in . Our first partials Tor (VQW +T) are
found in an ahalogous way. In finding our Jacobien, we are multiplying together
approximated partiel derivatives. It can easlly be shown that the relative error
in either product is the sum of the relative errors of the two factors multiplied,
where we define & relative error as the actual errvor divided by the magnitude of
the number in question. ~ But we can expect the significant error terms in our
time derivative to be the sum; :

~(error it ¥ (V2u+f) ~E%vror in (V’v+f) ] + {error in $ ) (V2w+f)y+ E?rror*in

n . @
_ (Vgilﬂu. )x}\?y . .
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- We assume here that we have VU defined for every internal point with the
value zero assigned for every point on the bowndary. We proceed to obtain V.
Our problem. seems comparaeble to a Poisson equation in two dimensions.

~ &
Py Py .

— = -bap(x,7)=£(x,3) -
d3x? dy” G ’

Milne has this to say: We overlgy our region concerned with a square lattice
having mesh ;engih h and replace the original eqpatlon by an appropriate difference
equation. The gimplest such equation is H(Y) =h®f(x,y), which follows readily
from our previous defini tion of B, the local error belng [

o

5 _V& ¥, as previously stated, by a first approximation.

We secure & somewhet more accurate difference eguation by the formula for 7=
above, which gives

K= ;——— = h‘?f(x,y}+ o(n®).

For computaﬁlonal bur%oses this eqpamlon can be CODSl&erably improved 1T the
function £(x,y) is such that VPf(x,y) exists every where in the region. For in
thet cage, we have approximetely :

K"*’v -56hlL ¥ —)6hks”*v”f(x,y)
‘-(since our operator

K= 6h™F+ O(hl‘L) )

- : :
and we replace the equatlon above with

h
Ky =602 (x,7)+ 5 VE(x,7),

Kio e |
GEUT) 180
£(x,¥) heppens to be harmonic, we get a simple equation

.

and our error has for its leading term [ sorder of h®, If

Ky= 6h2F(x,y).
Should we use the eguation

K(¥)= 60®5(x,y)+ g—- FE(x,y)




%

We can use the famillar finite di%ference form'
(o) 4=(v)=
L,y (-, y) (s, v ) Hi( x - )+ (ot g+ ) +
u;(x;~h,y+h)-z-wz.rgxmh,ym)w(x+h,;y_h) -20¥(%,¥ )=
6h2f(x,y)+-§— FE(%,7) 5 |

and from this ‘ ' .
1

Wx,y)= Eﬁ;[hm{x+h5y)+4¢(x-h,y)+h&(x,y}h)+4¢(x£y~h)+v(x+h,y+h)

L
+ w(x—h,y+h)+W(x~h$y~h)+w(x+h,y~h)-6h2f(x,y)— %~ ng(x,yZ]'_

The method most herdlded by modern authorities for solving eguations of this
type is the method of iteration. Scarborough seys this: "The greatest dravback
to the method of iteration is its great length. . . Compu tational errors in the
method of iteration are jumediately evident and are self-correcting. . . The
iteration process is slow, sure, and frequently long. . . The itervation process
can be performed mechanically by an automatic sequence-controlled calculating

machine . . . Because of the perfectly arbitrary menner in which the relaxations
arve mede, the relaxation process cannot be carried out by an automatic caluunlating
machine. . . If an automatic sequence - controlled calculating machine is

availeble, a process of iteration would be uged."

We start out with a coarse net (large value of h). Then wher iteration
given no further improvement in the ¥'s; the whole process is repebed with a
finer net (smaller value of h) and the iteration is carried om uniil no change
oceurs in the U's. The method of iteration starts with the upper left-hand corner
of the network and proceeds to correct all network values by means of the formula
presented above, using the latest computed values svailable.f(x,y),i{x,y), and
h we know. V's from & previous time step should prove a good initial guess. The
process is carried out in & systemstic and definite order by going from left %o
right uotil the end of a line is reached end then dropping down to the next
line, just as in reading the consecutive lines of a printed page. This method .
of correcting the network values is continued until no further Improvements can
be effected by the iteration process. ’

Finally,I shall present in modified form a simple formula set forth by
Scarborough, which enables us to see that to know merely the 8rder of a truncation
error is good information. If our error is of the order of h; we have

E = Ch" . o
where E is ow error and C is & constant of proportionality. Then for any two -
vaelues by, and h2 of h, the corresponding errors ave

‘n n '
El=,0h1, s E2=Ch2 .

from which



Let al and a.g denote the final approximate values of the function ¥ at any

interior mesh point, corresponding to b, and h2 respectively. Then

¥ =al+ El 5 ¥ = a.2+ E2
. - ) l n
Eliminating ¥ and taking account of E,= (T2} B, e get
Ey= 271
n ]
27-1

This formula gives the approximate velue of the inherent error et each
intersection point of the network after two values of h have been used, the
secomd value of h being helf the first value,

Sinee V¥ ma-i- E2, we can su‘bstitute th.e value of E2 and ged

(32"'&)
2

which gives & c¢lose approximation ‘bo the trve value of ¥ &t any net POinte

Vza, 4

#* ® * ® # * %

This is a modest paper - far too modest for ome to present as representative
of the magnitude of the problem involved with any degree of pride. But if you
have been mede anxious to any degree sbout an error problem or if a single .
question has arissm in your mind concerning the material that is presented
herein (great wonder it is not ignored), then the failures this effort is bound
to experience will not have been total.
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